

Sustainable Point of Care Diagnostics for Human Health and Wellness

18th U.S.-Korea Forum on Nanotechnology: Sensors for Human Cognition, and Sustainability in Semiconductor Manufacturing

Sameer Sonkusale

Professor

Tufts University Department of Electrical and Computer Engineering Department of Biomedical Engineering Department of Chemical and Biological Engineering Advanced Technology Laboratory 200 Boston Avenue, Medford, MA 02155

Stress affects Immunity and Cognition

PoC diagnostics for stress, immunity and cognition

How do you monitor stress at or near the human?

Can we do this at low cost using sustainable materials and methods?

Sustainable Materials for POC Diagnostics

Paper, Thread and Textiles as smart substrate

- Naturally biodegradable, environmentally friendly, low cost
- Diversity of materials and processing enables multi-functionality
- Simple processing Inkjet printing, Dip coating, Roll-to-roll
- Support microfluidic functions to process biological fluids

Paper Analytical Devices and Thread Analytical Devices

 NH_4^+

Whitesides Group, Harvard Diagnostics for All, LLC

Sonkusale et al, Analyst 2018

Outline

□ Fatigue sensing Thread Analytical Devices (TAD)

□ Stress sensing floss for detection of salivary cortisol

Inflammation monitoring distance based paper analytical device (dPAD)

Wearable Sweat Sensing Patch to Monitor Fatigue

Can we detect fatigue from sweat?

Monitor sweat biomarkers using electrochemical sensing threads

Human sweat contains useful biomarkers

Electrolytes

Na⁺, K⁺, Ca²⁺, NH₄⁺, Cl⁻, H⁺

Metabolites

 Lactate, Glucose, Urea, Uric Acid, Creatinine

Proteins and Peptides

• Amino Acids, Cortisol, DHEA

Xenobiotics

- Heavy metals such as Cu, Hg, Cd, Zn, Pb, As, Ni
- Ethanol
- Drugs
- Cosmetics

Threads can be functionalized to make sensors

- Threads are functionalized using a continuous *reel-to-reel dip-coating & drying* approach.
- Enables realization of multifunctional sensing threads that are thin, flexible, stitch-able, braid-able, weave-able and knit-able.

Microsystems and Nanoengineering, 2016 Sensors and Actuators: A, 2020

Conductive and Sensing Threads

Microsystems and Nanoengineering, 2016

Performance: Ion and Metabolite sensing threads

npj Flexible Electronics, 2020

Stamp sized electronics board

Use off-the shelf chipsets to realize miniaturized electronics button for readout and wireless communication

Maximum Exertion VO_{2max} studies in Humans

Observed correlations :

Higher VO₂ is associated with higher sodium (r = .847, p < .001) and **lower ammonium** (r = .785, p = .001). Higher VO₂ is associated with higher pH (r = .773, p = .003) and **lower ammonium** (r = .812, p = .001), but not sodium (p = .064).

Threads can go where nothing else can!

Distance based PAD for multiplexed cytokine detection

Can we detect cytokine levels due to inflammatory conditions?

Use Carbon Dots and Molecularly Imprinted Polymer (CD@MIPs) for distance based quantification : Measure the length of chemical reaction in detection zone

Lab on Chip, 2024

CRP (12.0 pg/mL), TNF-α (2.0 pg/mL), and IL-6 (10.0 pg/mL)

Lab on Chip, 2024

CDs@MIP dPAD: Results

(a) blank, (b) 2.50, 0.25, 1.50, (c) 3.0, 0.40, 2.0, (d) 6.0, 0.80, 4.0, (e) 9.0, 1.2, 6.0, (f) 12.0, 1.6, 8.0, (g) 15.0, 2.0, 10.0, (h) 18.0, 2.4, 12.0, (i) 21.0, 2.8, 14.0, and (j) 24.0, 3.2, 16.0 pg/mL for CRP, TNF-α, and IL-6, respectively.

Lab on Chip, 2024

CDs@MIP dPAD: State-of-the-art Comparison

Analytes	Method	Linear range (pg/mL)	LOD (pg/mL)	Reference
	Colorimetric	$117.0 \ge 10^3 - 10.0 \ge 10^6$	$117.0 \ge 10^3$	10
	Electrochemiluminescence	$10.0 - 1000 \ge 10^3$	4.60	18
	Fluorescent	$500.0 - 1.0 \ge 10^{6}$	300.0	42
	SRP-aptamer	$10.0 - 100.0 \ge 10^3$	10.0	43
CRP	Electrochemical	$10.0 \ge 10^3 - 150.0 \ge 10^6$	1.50 x 10 ³	44
	dPADs@CDs@MIPs	2.50 - 24.0	2.50	This work
	Colorimetric	$1.0 \ge 10^3 - 100.0 \ge 10^3$	600.0	6
	Electrochemical	$10.0-500 \ge 10^3$	10.0	17
	Resonance Raman	0.049 - 0.195	0.09	45
	Fluorescent	$250.0 - 250.0 \times 10^3$	123.0	46
TNF-α	SERS	$173.0 - 520.0 \ge 10^3$	173.0	47
	dPADs@CDs@MIPs	0.25 - 3.20	0.25	This work
	dPADs immunosensor	0.05 - 25.0	0.05	7
	LFIA	$2.0 - 5.0 \times 10^2$	370.0	11
	Magnetic colorimetric	$0.10 - 1.0 \ge 10^4$	40.0	12
	Electrochemical	0.50 - 5.0	500.0	13
IL-6	Photothermal	0.03 - 0.36	0.02	16
	dPADs@CDs@MIPs	1.50 - 16.0	1.50	This work

Conclusion

Paper and Thread Analytical Devices for stress, fatigue and cognition

- Naturally biodegradable, environmentally friendly, low cost
- Diversity of materials, methods and processing enables multi-functionality
- Facilitates microfluidic functions for sample acquisition, treatment, processing, sensing and transduction
- Facilitates electrochemical, Colorimetric, Fluorescent Based Detection

Acknowledgements

- Ruben Del Rio Ruiz (ECE)
- Atul Sharma (ChemE)
- Kawin Khachornsakkul (Chemistry)
- Danilo dos Santos Martin (ECE)
- Kundan Saha (Chemistry)
- Rachel Owyeung (BME)
- Junfei Xia (ECE)
- Aydin Sadeqi (ECE)
- Hojat Rezaei Nejad (MechE)
- Shideh Kabiri Ameri (ECE)
- Pooria Mostafalu (ECE)
- Trupti-Terse Thakoor (ChemE)
- Cihan Asci (ECE)
- Hasika Suresh (ChemE)
- Wenxin Zeng (ECE)
- Francisco Alaimo (BME)
- Gita Kiaee (BME)
- Sungkil Hwang (ECE)
- Mike Trakimas (ECE)
- Jian Guo (ECE)
- Yael Zilberman (ChemE)
- Guoqing Fu (ECE)

Collaborators

- Irwin Lucki, USUHS
- Manish Bhomia, USUHS
- Dr. Caroline Browne, USUHS
- Dr. Tom Darling, USUHS
- Dr. Ira Herman, Tufts U

- Giovanni Widmer, Veterinary School, Tufts U
- Ayanna Thomas, Psychology, Tufts U
- Eric Miller, ECE, Tufts U
- Matthew Panzer, ChBE, Tufts U
- Qiaobing Xu, ChBE, Tufts U
- Ali Khademhosseini, BME, Terasaki/Harvard
- Babak Ziaie, ECE and BME, Purdue U
- Tad Brunye, CABCS

Sponsors of the lab!

National Institutes of Health

CDMRP DEPARTMENT OF DEFENSE

CONGRESSIONALLY DIRECTED MEDICAL RESEARCH PROGRAMS

6 Catalyst Foundation

W. M. KECK FOUNDATION

hjf

THANK YOU!

Visit http://www.nanolab.info for more information

Collaboration/Opportunities - Send email to sameer@ece.tufts.edu